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desiderata.

FOOTNOTES

1. Note that for f-conditioned probabilities, the best possible algorithm doesn’t guess E(YF | d, q)

but rather E(YF | f, q). This is why the same decomposition doesn’t apply to σf
2.

2. Note that “the expected loss between the average (over d) h and f” for quadratic loss is simply

E(C | f, m, q), rather than E(C | f, m, q) minus an intrinsic noise term and a variance term. That this

is not so for log loss reflects the fact that whereas quadratic loss is linear in h, log loss is not.

3. As an alternative to the development here, one could have defined bias by “simply forgetting

the Y-averaging” for both f and h in (ii), rather than only for h in (iii). This would have resulted in

the bias equalling −Σy f(q, y) ln{ Σd P(d | f, m) ∫ dh P(h | d) h(q, y) }, rather than bias plus intrinsic

noise equalling that sum. The primary reason for not following this alternative approach is so that

desideratum (b) can be met.
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E( F(q, y)  |  m)  = ∫ df f(q, y) P(f),

E( H(q, y) |  m)  = ∫ df P(f) ∫ dh Σd P(d | f, m) P(h | d) h(q, y), and

E( ln[H(q, y)]  |  m)  =  ∫ df P(f) ∫ dh Σd P(d | f, m) P(h | d) ln [h(q, y)],

E( F(q, y) ln[H(q, y)]  |  m)  =  ∫ df f(q, y) P(f) ∫ dh Σd P(d | f, m) P(h | d) ln [h(q, y)].

Then we have the following:

(8) E(C | m, q) = νF + biasLL + varianceLL + covLL,

where νF ≡  −Σy E( F(q, y) |  m)  ln[ E( F(q, y) |  m) ],

biasLL ≡  −Σy E( F(q, y)  |  m)

varianceLL ≡  −Σy E( F(q, y)  |  m)   { E( ln[H(q, y)]  |  m)   -   ln[ E( H(q, y)  |  m) ] }, and

covLL ≡ −Σy  E( F(q, y) ln[ H(q, y) ]  |  m)   -    E( F(q, y)  |  m)  ×  Ε(ln[ H(q, y) ] |  m).

Note that  in equation (8) we add the covariance term rather than subtract it (as in equation (2)).

Intuitively, this reflects the fact that -ln(.) is a monotonically decreasing function of its argument.

It is still true that if the learning algorithm tracks the posterior  - if when f(q, y) rises so does

h(q, y) -  then the expected cost is smaller than it would be otherwise.

VII   FUTURE WORK

Future work consists of the following:

1) Investigating the real-world manifestations of the Bayesian correction to bias-plus-variance for

quadratic loss. (For example, it seems plausible that whereas the bias-variance trade-off involves

things like the number of parameters involved in the learning algorithm, the covariance term may

involve things like model mis-specification in the learning algorithm.)

2) Investigating the real-world manifestations of the “bias-variance” trade-off for the log-loss def-

initions of bias and variance used here.

3) Seeing if there are alternative definitions of bias and variance for log loss that meet our

ln  [ —————— ] ,
E(F(q, y) | m)

E(H(q, y) | m)
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This is the difference between an average of a function and the function evaluated at the average.

Since the function in question is concave, this difference grows if the points going into the average

are far apart. I.e., to have large variancell, the hd(q, y) should differ markedly as d varies. This es-

tablishes the final part of desideratum (c).

The approach taken here to deriving a bias-plus-variance formula for log loss is not “perfect”.

For example, variancell can be made infinite by having hd(q, y) = 0 for one d and one y, assuming

both f(q, y) and P(d | f) are nowhere zero. Although not surprising given that we’re interested in

log loss, this is not necessarily “desirable” behavior in a variance-like quantity. In addition, where-

as for the quadratic bias-plus-variance formula there is a natural symmetry between σf and the vari-

ance (simply change the subscript on the Y between h and f), there is no such symmetry in equation

(6). (Having quantities that play “the same intuitive roles” for the log loss formula as the corre-

sponding quantities in the quadratic bias-plus-variance formula was considered more important

than such symmetries.)

Other approaches tend to have even more major problems however. For example, as an alter-

native to the approach taken here, one could define a “variance” first, and then define bias by re-

quiring that the bias plus the variance plus thes noise gives the expected error. It is not clear how

to follow this approach however. In particular, the “natural” definition of variance would be the

average difference between h and the average h,

−  Σd P(d | f, m) ∫ dh P(h | d) Σy { Σd'  P(d' | f, m) ∫ dh P(h | d') h(q, y) } ln[h(q, y)]

=

−Σy  { Σd'  P(d' | f, m) ∫ dh P(h | d') h(q, y) } Σd P(d | f, m) ∫ dh P(h | d)  ln[h(q, y)]

(cf. the formula above giving E(C | f, m, q) for log loss.)

However consider the case where P(h | d) = δ(h - f) for all d for which P(d | f, m) ≠ 0. With this

alternative definition of variance, in such a situation we would have the variance equalling

−Σy f(q, y) ln[f(q, y)] = νf, not zero. (Indeed, just having P(h | d) = δ(h - h') for some h' for all d for

which P(d | f, m) ≠ 0 suffices to violate our desiderata, since this will in general not result in zero

“variance”.) Moreover, this value of the variance would also equal E(C | f, m, q). So bias =

E(C | f, m, q) - variance - νf would equal −νf, not zero. This violates our desideratum concerning

bias.

Finally, just as there is an additive Bayesian correction to the f-conditioned quadratic loss bias-

plus-variance formula, there is also one for the log loss formula. Write
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distribution f(q, .) and the average h(q, .). With some abuse of notation, this can be written as follows:

(5)  biasll ≡ −Σy f(q, y) ln [ E(H(q, y) | f, m) / f(q, y) ] =

−Σy f(q, y)

This is a very natural definition of “bias”. Note in particular that if the average h-induced distri-

bution across Y just equals the target, then biasll = 0. This is in agreement with desideratum (b), with

the modification to that desideratum that one doesn’t average over Y for log loss.3

Given these definitions, the “variance”, variancell, is fixed, and given for log loss by

(6) variancell  ≡ −Σy f(q, y) {  E(ln[ H(q, y) ] | f, m) - ln[ E(H(q, y) | f, m) ] }

= −Σy f(q, y) {  Σd  P(d | f, m) ∫ dh P(h | d) ln[h(q, y)]

−  ln[ Σd P(d | f, m) ∫ dh P(h | d) h(q, y) ] }.

Combining, for log loss,

(7)  E(C | f, m, q)  =  νf + biasll + variancell.

It is straightforward to establish that variancell meets the requirements in desideratum (c). First,

consider the case where P(h | d) = δ(h - h') for some h'. In this case the term inside the curly brackets

in (5) just equals ln[h'(q, y)] - ln[h'(q, y)] = 0. So variancell does equal zero when the guess h is in-

dependent of the training set d. (In fact, it equals zero even if h is not-single-valued, the precise case

(c) refers to.) Next, since the log is a concave function, we know that the term inside the curly brack-

ets is never greater than zero. Since f(q, y) ≥ 0 or all q and y, this means that variancell ≥ 0 always.

Finally, we can examine the P(h | d) that make variancell large. For simplicity assume that X and

Y are not only countable, but finite. Then any h is an |X|-fold cartesian product of vectors living on

|Y|-dimensional unit simplices. Accordingly, for any d, P(h | d) is probability density function in a

Euclidean space. To simplify matters further, assume that P(h | d) actually specifies a single unique

distribution h for each d, indicated by hd. Then the term inside the curly brackets in equation (6)

equals

Σd  P(d | f, m)  ln[hd(q, y)] −  ln[ Σd P(d | f, m) hd(q, y) ].

ln  [ —————————————— ] .
f(q, y)

Σd P(d | f, m) ∫ dh P(h | d) h(q, y)
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would like the new formula to meet conditions (i) through (iv) and (a) through (c) presented above.

Now the log loss function is given by

E(C | f, h, q)  = −Σy f(q, y) ln[h(q, y)],

so

E(C | f, m, q) = −Σy f(q, y)  Σd  P(d | f, m) ∫ dh P(h | d) ln[h(q, y)].

This loss function, also known as the logarithmic scoring rule, can be appropriate when the out-

put of the learning algorithm h is meant to be a guess for the entire target distribution f [Bernardo

and Smith, 1994]. One of its strengths is that it can be used even when there is no metric structure

on Y (as there must be for quadratic loss to be used).

There is no such thing as E(YF | f, m) in general when log loss is used (i.e., when Y is not a

metric space). So we cannot measure intrinsic noise relative to -E(YF | f, m), as in the quadratic loss

bias-plus-variance formula. One natural alternative way to measure intrinsic noise for log-loss is

as the Shannon entropy of f,

(4) νf ≡ −Σy f(q, y) ln[f(q, y)].

Note that this definition meets both parts of desideratum (a).

Since there is no such thing as E(YF | f, m), we can not define bias as in (ii) or (iii) in their orig-

inal forms. However we can define it as in (iii) if we simply fail to take the Y-average of the d-

averaged h as (iii) stipulates. Indeed, whereas with quadratic loss the best guess comes by averag-

ing over Y  - that guess is E(YF | f, q) -  with log loss there is no such averaging involved in getting

the best guess. Accordingly the Y-average of an h is not a particularly salient characteristic of that

h, and we shouldn’t be interested in it even if it is defined (e.g., even if Y is a vector space).

Using (iii) with this modification means that we are interested in the expected loss between the

average (over d) h and f:

−Σy f(q, y) ln{ Σd P(d | f, m) ∫ dh P(h | d) h(q, y) }.

This quantity is supposed to give bias plus intrinsic noise.2 Given our measure of intrinsic noise in

equation (4), this means that for log loss “the bias” is the Kullback-Liebler distance between the
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V OTHER CHARACTERISTICS ASSOCIATED WITH THE LOSS

There are a number of other special properties of quadratic loss besides equations (1) and (2).

For example, for quadratic loss, for any f, E(C | f, m, q, algorithm A) ≤ E(C | f, m, q, algorithm B)

so long as A’s guess is the average of B’s (formally, so long as we have P(yH | d, q, A) =

δ(yH, Σy y h(q, y) P(h | d, B)). So without any concerns for priors, one can always construct an

algorithm that is assuredly superior to an algorithm with a stochastic nature: simply guess the sto-

chastic algorithm’s average. (See [Wolpert 1995, Perrone 1993].)

Now the EBF is symmetric under h ↔ f. Accordingly, this kind of result can immediately be

turned around. In such a form it says, loosely speaking, that a prior that is the “average” of another

prior assuredly results in lower expected cost, regardless of the learning algorithm. In this partic-

ular sense, one can order priors in an algorithm-independent manner. (Of course, one can also order

them in an algorithm-dependent manner if one wishes, for example by looking at the expected gen-

eralization error of the Bayes-optimal learning algorithm for the prior in question.)

The exact opposite behavior holds for loss functions that are concave rather than convex. For

such functions, guessing randomly is assuredly superior to guessing the average, regardless of the

target. (There is a caveat to this: one cannot have a loss function that is both concave everywhere

across an infinite Y and nowhere negative, so formally, this statement only holds if we know that

the yF and yH are both in a region of concave loss.)

Finally, there are other special properties that some loss functions possess but that quadratic

loss does not. For example, if the loss can be written as a function L(., .) that is a metric (e.g., ab-

solute value loss, zero-one loss), then for any f,

(3)        | E(C | f, h1, m, q) - E(C | f, h2, m, q) |   ≤   Σy,y' L(y, y') h1(q, y) h2(q, y').

So for such loss functions, you can bound how much replacing h1 by h2 can improve / hurt gener-

alization by looking only at h1 and h2, again without any concern for the prior over f. That bound

is nothing other than the expected loss between h1 and h2.

Unfortunately, quadratic loss is not a metric, and therefore one can not do this for quadratic

loss.

VI BIAS PLUS VARIANCE FOR LOG LOSS

In creating an analogy of the bias-plus-variance formula for non-quadratic loss functions, one
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σF
2  = Σd,yF

 P(d, yF | m, q)  [yF  -  E(YF | d, q)]2      (the Bayes-optimal algorithm’s cost)

+

Σd P(d | m, q)  ( [E(YF | d, q)]2  -  [E(YF | m, q)]2 ).

Note that for the Bayes-optimal learning algorithm, that extra term is exactly half the covariance

term in equation (2). This is to be expected, since for that learning algorithm biasF equals 0 and

varianceF equals cov. The latter point follows from the following identities:

For the optimal algorithm, the variance is given by

        Σd P(d | m, q)  [E(YH
2 | d, q)  -  E2(YH | q)]

=

        Σd P(d | m, q)  [E2(YF | d, q)  -  E2(YF | q)].

In addition, the covariance is given by

   Σd,yF,yH
 P(yH | d, q) P(yF | d, q) P(d | m, q)  ×  [yH - E(YH | q)]  × [yF - E(YF | q)]

=

Σd P(d | m, q)  ×  [E(YF | d, q) - E(YF | q)]  × [E(YF | d, q) - E(YF | q)].

Intuitively, the “extra term” in σF
2 measures how much paying attention to the data can help

you to guess f. This follows from the fact that the expected cost of the best possible data-indepen-

dent learning algorithm equals σF
2. The “extra term” is the difference between this expected cost

and that of the Bayes-optimal algorithm. Note the nice property that when the variance of the

Bayes-optimal algorithm is large, so is this difference in expected costs. So when the Bayes-opti-

mal algorithm’s variance is large, there is a large potential gain in milking the data.

As it must, E(C | m, q) reduces to the expression in equation (1) for E(C | f = f*, m, q) for the

prior P(f) = δ(f - f*). The special case of equation (2) where there is no noise, and the learning al-

gorithm always guesses the same single-valued input-output function for the same training set, is

given in [Wolpert, 1994].

One can argue that E(C | m) is usually of more direct interest than E(C | f, m), since one can

rarely specify the target in the real world but must instead be content to characterize it with a prob-

ability distribution. Insofar as this is true, by equation (2) there is not a “bias-variance” trade-off,

as is conventionally stated. Rather there is a “bias-variance-covariance” trade-off.
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varianceF  ≡ E(YH
2 | q) - [E(YH | q)]2, and

cov ≡ ΣyF,yH
 P(yH, yF | m, q) × [yH - E(YH | q)] × [yF - E(YF | q)].

(The terms E(YF | q), E(YF
2 | q), E(YH | q) and E(YH

2 | q) are as in the formulas just before equation

(1), except for the addition of an outer integral ∫ df P(f), to average out f.)

To evaluate the covariance term, use P(yH, yF | m, q) = ∫ dh df Σd P(yH, yF, h, d, f, | m, q). Then

use the simple identity

P(yH, yF, h, d, f, | m, q)  =  f(q, yF) h(q, yH) P(h | d) P(d | f, m) P(f).

Formally, the reason that the covariance term exists in equation (2) when there was none in

equation (1) is that yH and yF are conditionally independent if one is given f and q (as in equation

(1)), but not only given q (as in equation (2)). To illustrate the latter point, note that knowing yF ,

for example, tells you something about f you don’t already know (assuming f is not fixed, as in

equation (2)). This in turn tells you something about d, and therefore something about h and yH. In

this way yH and yF are statistically coupled.

Intuitively, the covariance term simply says that one would like the learning algorithm’s guess

to “track” the (posterior) most likely targets, as one varies training sets. This is intuitively reason-

able. Indeed, the importance of such “tracking” between the learning algorithm P(h | d) and the pos-

terior P(f | d) is to be expected, given that E(C | m, q) can also be written as a non-Euclidean inner

product between P(f | d) and P(h | d). (This is true for any loss function - see [Wolpert 1994].)

The terms biasF, varianceF, and σF play the same roles as bias, variance, and σf do in equation

(1). The major difference is that here they involve averages over f according to P(f), since the target

f is not fixed. In particular, desiderata (b) and (c) are obeyed exactly by biasF and varianceF (as-

suming (b) is changed to refer to the “P(f)-induced y” rather than “f-induced y”). Similarly the first

part of desideratum (a) is obeyed exactly, if the reference to “f” there is taken to mean all f for

which P(f) is non-zero, and if the delta functions referred to there are implicitly restricted to be

identical for all such f. In addition σF
2 is independent of the learning algorithm, in agreement with

point (i).

However now that we have the covariance term, the second part of desideratum (a) is no longer

obeyed. Indeed, by using P(d, yF | m, q) = P(yF | d, q) P(d | m, q) we can rewrite σF
2 as the expected

cost of the best possible (Bayes-optimal) learning algorithm plus another term:1
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c) Variance is non-negative, equals 0 if the guessed h is always the same single-valued function

(independent of d), and is large when the guessed h varies greatly in response to changes in d.

The utility of the bias-plus-variance formula lies in the fact that very often there is a “bias-vari-

ance” trade-off. For example, it may be that a modification to a learning algorithm improves its

bias for the target at hand. (This is often true when more free parameters are incorporated into the

algorithm’s model, for example.) But this is often at the expense of increased variance.

IV THE BAYESIAN CORRECTION TO QUADRATIC LOSS BIAS-PLUS-VARIANCE

It is worth spending a moment examining other properties that derive primarily from the choice

of loss function, to put the bias-plus-variance formula in context. The section briefly reviews some

of those properties.

First it is important to realize that illustrative as it is, the bias-plus-variance formula “examines

the wrong quantity”. In the real world, it is almost never E(C | f, m) that is directly of interest, but

rather E(C | d). (We know d, and therefore can fix its value in the conditioning event. We do not

know f.) Analyzing E(C | d) is the purview of Bayesian analysis [Buntine and Weigend 1991, Ber-

nardo and Smith 1994]. Generically, it says that for quadratic loss, one should guess the posterior

average y [Wolpert 1994].

As conventionally discussed, E(C | d) does not bear any connection to the bias-plus-variance

formula. However there is a “mid-way” point between Bayesian analysis and the kind of analysis

that results in the bias-plus-variance formula. In this middle approach, rather than fix f as in bias-

plus-variance, one averages over it, as in the Bayesian approach. (In this way one avoids the trivial

fact that there exists an algorithm with both zero bias and zero variance - the algorithm that always

guesses h = E(YF | f, q), independent of d.) And rather than fix d as in the Bayesian approach, one

averages over d, as in bias-plus-variance. (In this way one maintains the illustrative power of the

bias-plus-variance formula.) The result is the following “Bayesian correction” to the quadratic loss

bias-plus-variance formula [Wolpert 1994]:

(2) E(C | m, q) = σF
2 + (biasF)2 + varianceF  - 2cov,

where σF
2 ≡  E(YF

2 | q) - [E(YF | q)]2,

biasF  ≡  E(YF | q) - E(YH | q),
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the average Y and Y2 values of the target, and of the average hypotheses made in response to train-

ing sets generated from the target.

Then simple algebra verifies the following formula for quadratic loss:

(1) E(C | f, m, q) = σf
2 + (bias)2 + variance,

where σf
2  ≡  E(YF

2 | f, q) - [E(YF | f, q)]2,

bias ≡ -E(YF | f, q) - E(YH | f, q),

variance  ≡ E(YH
2 | f, q) - [E(YH | f, q)]2.

The bias-variance formula in [Geman et al. 1992] is a special case of equation (1), where the

learning algorithm always guesses the same h given the same training set d, and where the hypoth-

esis h that it guesses is always a single-valued mapping from X to Y.

Intuitively, in equation (1)

i) σf
2 measures the intrinsic error due to the target f, independent of the learning algorithm;

ii) The bias measures the loss between the average (over d) yH and the average yF ;

iii) Alternatively, σf
2 plus the squared bias measures the expected loss between the average (over

d) YH and f;

iv) The variance measures the “variability” of the guessed YH for the d-averaged h. If the learning

algorithm always guesses the same h for the same d, and that h is always a single-valued function

from X to Y, then the variance reflects the variability of the learning algorithm as d is varied.

In particular, we have the following properties:

a) If f is a delta function in Y for each x (i.e., a single-valued function from X to Y), the intrinsic

noise term (i) equals 0. In addition, the intrinsic noise term is a strict lower bound on the error  -

for no learning algorithm can be E(C | f, m, q) be lower than the intrinsic noise term;

b) If the average (over d and y) h-induced y equals the average (over y) f-induced y, bias = 0;
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over Y values. I will write P(y | x, h) = h(x, y) for short. Note that h is a matrix of real numbers.

When the y associated with the hypothesis has to be distinguished from the y associated with the

target, I will write them as yH and yF, respectively.

• Any learning algorithm is specified by the distribution P(h | d).

• In supervised learning, f and h are conditionally independent given d: P(f, h | d) = P(f | d) P(h | d).

• Given f, h, and a test set point q ∈ X, the “cost” or “error” C is given by a “loss function”. Usually

this can be expressed as a mapping L taking Y × Y to a real number. Formally, in these cases the

expected value of C given h, f and q is given by E(C | f, h, q) = ΣyH,yF
 h(q, yH) f(q, yF) L(yH, yF).

• Expectations of a random variable have the variable in question indicated by capitalization (to

indicate that it does not have a particular value). Note the implicit rule of probability theory that

any random variable not conditioned on is marginalized over. So for example (using the condition-

al independencies in conventional supervised learning), expected cost given the target, training set

size, and test set point, is given by

E(C | f, m, q)   = ∫ dh Σd E(C | f, h, d, q) P(h | f, d, q) P(d | f, q, m)

  = ∫ dh Σd E(C | f, h, q) P(h | d) P(d | f, m)

  = ∫ dh E(C | f, h, q) {Σd P(h | d) P(d | f, m)}.

III BIAS PLUS VARIANCE FOR QUADRATIC LOSS

Assume we have the quadratic loss function, L(y, y') = (y - y')2. Write

-E(YF | f, q) = Σy y f(q, y),

-E(YF
2 | f, q) = Σy y2 f(q, y),

-E(YH | f, q)  = ∫ dh Σd P(d | f, m) P(h | d) Σy y h(q, y), and

-E(YH
2 | f, q)  = ∫ dh Σd P(d | f, m) P(h | d) Σy y2 h(q, y),

where for clarity the m-conditioning in the expectation values is not indicated. These are, in order,
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I INTRODUCTION

The bias-plus-variance formula [Geman et al. 1992] is a powerful tool for analyzing supervised

learning scenarios that have quadratic loss functions. In this paper an additive “Bayesian” correc-

tion to the formula is presented, appropriate when the target is not fixed. Next is a brief discussion

of some other loss-function-specific properties of supervised learning. In particular, is shown how

with quadratic loss one assuredly improves the performance of any learning algorithm with a ran-

dom component, whereas the opposite is true for concave loss functions. It is also shown that, with-

out any concern for the target, one can bound the change in zero-one loss generalization error as-

sociated with making some guess h1 rather than a different guess h2.

Kong and Dietterich recently extended the conventional (fixed target) version of the bias-plus-

variance formula to zero-one loss functions [Kong and Dietterich 1995]. This paper ends by pro-

posing an extension of that fixed-target version of the formula to log-loss functions, and then the

Bayesian additive correction to that log loss formula.

Both thew quadratic loss and log loss correction terms are a covariance, between the learning

algorithm and the posterior distribution over targets. Accordingly, in the context in which they ap-

ply, there is not a “bias-variance trade-off”, or a “bias-variance dilemma”, as one often hears. Rath-

er there is a bias-variance-covariance trade-off.

II NOMENCLATURE

This paper uses the extended Bayesian formalism (EBF - see [Wolpert 1994, Wolpert et al.

1995]. Specifically, in the current context, the EBF amounts to the following:

• X and Y are the input and output spaces respectively, with elements x and y. For simplicity, it is

assumed that both are countable.

• The “target” f is an x-conditioned distribution over y values. I will write P(y | x, f) = f(x, y) for

short. Note that f is a matrix of real numbers, one row for each x, and one column for each y.

• The training set d is a set of x-y pairs formed by IID sampling f. It has size m, and its elements

are written as {dX(i), dY(i) : 1 ≤ i ≤ m}. Formally, P(dY | f, dX) = Πm
i=1  f(dX(i), dY(i)).

• The “hypothesis” created by the (supervised) learning algorithm is an x-conditioned distribution
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Abstract: This paper presents a Bayesian additive “correction” to the familiar quadratic loss bias-

plus-variance formula. It then discusses some other loss-function-specific aspects of supervised

learning. It ends by presenting a version of the bias-plus-variance formula appropriate for log loss,

and then the Bayesian additive correction to that formula. Both the quadratic loss and log loss cor-

rection terms are a covariance, between the learning algorithm and the posterior distribution over

targets. Accordingly, in the context in which those terms apply, there is not a “bias-variance trade-

off”, or a “bias-variance dilemma”, as one often hears. Rather there is a bias-variance-covariance

trade-off.


